Block Five Diagonal Matrices and the Fast Numerical Solution of the Biharmonic Equation
نویسندگان
چکیده
A factoring and block elimination method for the fast numerical solution of block five diagonal linear algebraic equations is described. Applications of the method are given for the numerical solution of several boundary-value problems involving the biharmonic operator. In particular, 22 eigenvalues and eigenfunctions of the clamped square plate are computed and sketched.
منابع مشابه
Numerical Solution of Multidimensional Exponential Levy Equation by Block Pulse Function
The multidimensional exponential Levy equations are used to describe many stochastic phenomena such as market fluctuations. Unfortunately in practice an exact solution does not exist for these equations. This motivates us to propose a numerical solution for n-dimensional exponential Levy equations by block pulse functions. We compute the jump integral of each block pulse function and present a ...
متن کاملUpper and lower bounds for numerical radii of block shifts
For an n-by-n complex matrix A in a block form with the (possibly) nonzero blocks only on the diagonal above the main one, we consider two other matrices whose nonzero entries are along the diagonal above the main one and consist of the norms or minimum moduli of the diagonal blocks of A. In this paper, we obtain two inequalities relating the numeical radii of these matrices and also determine ...
متن کاملNumerical solution of delay differential equations via operational matrices of hybrid of block-pulse functions and Bernstein polynomials
In this paper, we introduce hybrid of block-pulse functions and Bernstein polynomials and derive operational matrices of integration, dual, differentiation, product and delay of these hybrid functions by a general procedure that can be used for other polynomials or orthogonal functions. Then, we utilize them to solve delay differential equations and time-delay system. The method is based upon e...
متن کاملDiagonal and Monomial Solutions of the Matrix Equation AXB=C
In this article, we consider the matrix equation $AXB=C$, where A, B, C are given matrices and give new necessary and sufficient conditions for the existence of the diagonal solutions and monomial solutions to this equation. We also present a general form of such solutions. Moreover, we consider the least squares problem $min_X |C-AXB |_F$ where $X$ is a diagonal or monomial matrix. The explici...
متن کاملNumerical solution of general nonlinear Fredholm-Volterra integral equations using Chebyshev approximation
A numerical method for solving nonlinear Fredholm-Volterra integral equations of general type is presented. This method is based on replacement of unknown function by truncated series of well known Chebyshev expansion of functions. The quadrature formulas which we use to calculate integral terms have been imated by Fast Fourier Transform (FFT). This is a grate advantage of this method which has...
متن کامل